Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.

نویسندگان

  • Jason Yamada-Hanff
  • Bruce P Bean
چکیده

We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current-which amplifies EPSPs-was most effectively recruited by rapid voltage changes, while Ih-which blunts EPSPs-was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Sodium Current at Subthreshold Voltages: Activation by EPSP Waveforms

Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also "persistent" sodium current, a noninactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37°C with near-physiological ionic conditions. Unex...

متن کامل

Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons

A role for "persistent," subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. T...

متن کامل

Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation.

Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current-voltage curve was dominated by...

متن کامل

Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons.

We used a preparation of acutely dissociated neurons to quantify the ionic currents driving the spontaneous firing of substantia nigra pars compacta neurons, isolated from transgenic mice in which the tyrosine hydroxylase promoter drives expression of human placental alkaline phosphatase (PLAP) on the outer surface of the cell membrane. Dissociated neurons identified by fluorescent antibodies t...

متن کامل

Potassium currents during the action potential of hippocampal CA3 neurons.

Central neurons have multiple types of voltage-dependent potassium channels, whose activation during action potentials shapes spike width and whose activation and inactivation at subthreshold voltages modulate firing frequency. We characterized the voltage-dependent potassium currents flowing during the action potentials of hippocampal CA3 pyramidal neurons and examined the susceptibility of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 114 4  شماره 

صفحات  -

تاریخ انتشار 2015